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Additional File 1 

Joint posterior density 

The joint posterior density of all unknowns under DFMH can be written as follows: 
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and  p β and  2

ep   can be arbitrarily specified to be informative or diffuse priors 

with different functional distributional forms.   

 For UNIMH and BIVMH, the joint posterior density is further marginalized 

to integrate out the uncertainty on 
1 1

2 2 2, ,...,
mg g g    ; i.e. 
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i.e., a mixture of a scaled Student t distribution with probability  and a point mass at zero of 

probability (1-). 
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Description of the three sampling strategies 

Sampling strategy for DFMH 

Sampling the degrees of freedom parameter for the random SNP effects: We used a proper 

prior   which corresponds to a Uniform(0,1) prior on . The full conditional 

density (FCD) for  can be written as follows: 

 

where I(.) is the indicator variable such that if the condition inside (.) is true, I(.) = 1, otherwise 

I(.) = 0. As this FCD is not recognizable, we propose a random walk normal Metropolis Hastings 

(MH) step on .  Noting that the Jacobian from  to  is , the corresponding FCD 

for  is as follows:    
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Suppose the value of  in the current cycle i is , the random walk proposal for  in the 

next MCMC cycle is drawn from a Gaussian distribution:  

  

This is equivalent to generating a random variable, say  from N(0, ) and adding it to  to 

propose . The MH acceptance ratio is determined to be .  For 

numerical stability, we evaluated this ratio as: 

 

To implement this MH sampling strategy, we generate  from a Uniform(0,1) distribution.   If 

, accept .  If  u  <  then set .  Otherwise if u > , then set .  

The following tuning procedure adapted from Muller [1] is to determine : 
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2) For every 10 cycles if the rate of acceptance is less than 20%, decrease  by a factor of 0.7. 

3) After burn-in, keep  constant and monitor subsequent acceptance rates to ensure that they 

fall within 25 to 75%. 

Sampling the scale parameter for the random SNP effects: Borrowing results from Yi and Xu 

[2],  the FCD for  based on the specification of a conjugate prior  = Gamma 

 can be written as follows:   
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Sampling strategy for UNIMH 

Sampling the degrees of freedom parameter for the random SNP effects:   The “collapsed” 

FCD for sampling  (after integrating out  2

1j
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g
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
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from the FCD for as specified in DFMH 

above) is as follows:  

 

As this FCD is not recognizable, we specify a random walk MH step on .  Note that the 

Jacobian from  to  is . The corresponding FCD for  is as follows:    
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Suppose the value of  in the current cycle i is .  We propose a random walk sample for 

 in the next cycle using a Gaussian proposal distribution:  

  

That is equivalent to generating a random variable, say  from N(0, ) and adding it to  to 

propose . To determine the MH acceptance ratio , we evaluated 

this ratio in a numerically stable manner as: 

 

To implement this MH sampling strategy, we first generated  from a Uniform(0,1) distribution.  
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Even though this FCD is recognizable, we propose a random walk MH step on .  Note 

that the Jacobian from  to  is . The corresponding FCD for  is as follows:    

 

where .  Hence  

 

Suppose the value of  in the current cycle i is .  We propose a random walk value for 

 in the next cycle from a Gaussian distribution:  
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That is equivalent to generate a random variable, say  from and adding it to  to 

propose . To determine the acceptance ratio  in a numerically 

stable manner, we evaluated this ratio as: 

 

To implement this MH sampling strategy, we first generated  from a Uniform(0,1) distribution.  

If  or u < , set .  Otherwise, if  u >   then set . The same tuning 

procedure from Muller [1] described previously is used to tune :  
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Stage 2: Sample  and  using UNIMH with fixing  and to the values tuned 

from the last cycle in stage 1 and compute correlation  between samples of  and  

within stage 2;  

Stage 3: Jointly sample  and  using a bivariate Gaussian proposal density with 

variances  and  based on those tuned at the end of Stage 1 and a covariance based on the 

correlation computed from Stage 2. The joint FCD for  and (based on a “collapsed 

specification that integrates out  2

1j

m

g
j



from the FCD) is as follows:  

 

As this density is not recognizable, we could use a random walk normal MH step on  

and .  Note that the Jacobian from  to  is  whereas the Jacobian from  to 

 is . The corresponding FCD for  and  is as follows:    
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Where , hence  

 

Suppose the value of  in the current cycle i is .  We propose a random walk for 

 in the next cycle from a bivariate Gaussian distribution:  

  

That is equivalent to generate a random variable, say  from N(0, ) and add it to  to 

propose , where ,  and  were determined after tuning at 

the end of Stage 1 and the correlation  between samples of  and  is based on 

samples drawn during Stage 2.  

To determine the acceptance ratio , we evaluated this ratio in a numerically 

stable manner as: 
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To implement this Metropolis sampling strategy, we first generated  from a Uniform(0,1) 

distribution.  If  or u < then set .  Otherwise, if u >, then set . The 

Muller  [1] tuning procedure was adapted as follows to determine . 

1) For the last 10 cycles, the rate of acceptance is greater than 60%, increase by a factor of 

1.2. 

2) For the last 10 cycles, the rate of acceptance is less than 10%, decrease  by a factor of 0.7. 

3) After the burn-in, keep  constant and monitor subsequent acceptance rates to ensure that 

they fall within 25 to 75%. 

Stage 4: Jointly sample  and  using a bivariate Gaussian proposal density with 

fixing value of  at the end of Stage 3. After burn-in, save all samples on  and using MH 

with the bivariate Gaussian proposal density.   

u
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